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Abstract. Simple shear flow over a porous plate consisting of a planar array of particles is studied as a model of
flow over a membrane. The main objective is to compute the slip velocity defined with reference to the velocity
profile far above the plate, and the drift velocity induced by the shear flow underneath the plate. The difference
between these two velocities is shown to be proportional to the thickness of the plate. When the geometry of the
particle array is anisotropic, the directions of the slip and drift velocity are generally different from the direction
of the overpassing shear flow. An integral formulation is developed to describe flow over a plate consisting of
a periodic lattice of particles with arbitrary shape, and integral representations for the velocity and pressure are
developed in terms of the doubly-periodic Green’s function of three-dimensional Stokes flow. Based on the integral
representation, asymptotic expressions for the slip and drift velocity are derived to describe the limit where the
particle size is small compared to the inter-particle separation, and numerical results are presented for spherical
and spheroidal particles of arbitrary size. The asymptotic results are found to be accurate over an extended range of
particle sizes. To study the limit of small plate porosity, the available solution for shear flow over a plane wall with
a circular orifice is used to describe flow over a plate with a homogeneous distribution of circular perforations, and
expressions for the slip and drift velocity are derived. Corresponding results are presented for axial and transverse
shear now over a periodic array of cylinders arranged distributed in a plane. Streamline pattern illustrations confirm
that a negative drift velocity is due to the onset of eddies between closely-spaced particles.
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1. Introduction

An important area of research in biomechanics concerns the effect of a shear flow on the equi-
librium shapes of, and mass transport through, membranes enclosing vesicles and biological
cells [1–3]. The membranes typically consist of lipid bilayers, sometimes resting on a network
of proteins comprising the cytoskeleton, separating the vesicle or cytoplasmic fluid from the
ambient plasma or buffer fluid. From the point of view of hydrodynamics, a membrane may be
regarded as a screen or sieve, and the problem of flow through or over it may be studied within
the more general context of flow over a porous or irregular plate separating two semi-infinite
regions occupied by the same or different fluids. This more general problem is pertinent to sev-
eral other areas of biofluiddynamics and mainstream engineering fluid mechanics involving,
for example, flow over arrangements of cilia or bundled tubes.

Previous studies of the thermodynamics and hydrodynamics of polymeric and biological
membranes have modeled the network of the fundamental molecular units comprising a mem-
brane as a planar lattice of particles over which the smaller molecules of the solute slide [4,
5]. The theory seeks to predict the species diffusivity and to establish the relationship between
the pressure drop and the geometrical properties of the membrane expressed in terms of the
hydrodynamic resistance for flow normal to the membrane. Ishii [6] studied flow normal to
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a planar lattice of spherical particles in the asymptotic limit where the particle size is small
compared to the particle separation. To the author’s knowledge, shear flow over a porous plate
or particulate plane has not been addressed explicitly by previous authors, although three
related classes of problems have been discussed in detail.

The first class of problems involves flow over an irregular surface with small or large ampli-
tude protuberances possibly of fractal nature [7, 8]. Issues of interest include the establishment
of the physical origin of the no-slip boundary condition, the computation of the slip velocity as
a function of the morphology of the surface irregularities, and the study of transport properties
in terms of effective heat or mass transfer coefficients. The second class of problems involves
shear flow over a semi-infinite particulate matrix modeling a porous medium. Reviews and
numerical simulations for two- and three-dimensional arrangements were presented by Larson
and Higdon [9, 10] and Sangani and Behl [11]. Their results illustrated the dependence of the
slip velocity on the geometry of the porous medium microstructure, and helped to establish
a theoretical foundation for Brinkman’s equation governing the structure of the flow near the
surface of a porous medium, also pointing out its limitations. The third class of problems
involves shear flow over a wall with a circular hole or side pore, possibly in the presence of
suction that drives the fluid through the hole or into the pore, with applications to particle
entrainment and particle screening [12–15].

In this paper, we study shear flow over a planar lattice of particles forming a porous surface.
When the thickness of the plate is comparable to, or larger than, the gaps between the particles,
regions of recirculating flow develop in the intervening spacing, and the flow decays rapidly
underneath the array to give a virtually quiescent lower fluid. When, however, the particle
size is smaller than the inter-particle separation, the shear flow penetrates the lower fluid, and
a uniform drift velocity is established underneath the array. If the particle shape or lattice
geometry is anisotropic, the direction of the drift velocity is generally different from that of
the overpassing shear flow. Far above the lattice, the flow reduces to simple shear flow with a
macroscopic slip velocity similar to that established in shear flow over a porous material. The
main goal of the present work is to illustrate the dependence of the slip and drift velocity on
the particle shape and lattice geometry.

The asymptotic and numerical studies are based on integral representations of periodic
Stokes flow using an appropriate Green’s function. In implementing the numerical procedure
for solving an integral equation of the first kind for the traction over a particle surface, a
general method is developed for removing the eigenfunction of the single-layer Stokes hydro-
dynamic potential. To complement the results for three-dimensional flow over a planar array,
two related configurations are also considered. The first configuration involves shear flow over
a flat plate of zero thickness containing a homogeneous distribution of circular perforations of
small size, which is relevant to shear flow over a porous plate with a large solid areal fraction.
The second configuration involves longitudinal and transverse shear flow over an array of
cylinders. Comparisons of the results for three-and two-dimensional configurations illustrate
once again the fundamental differences in the nature of the corresponding flows.

2. Shear flow over a planar particle lattice

Consider infinite simple shear flow over a two-dimensional lattice of identical rigid particles
positioned at the vertices of a regular lattice that is parallel to thexy plane, as shown in
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Figure 1. Shear flow over a planar lattice of particles. Far below the lattice, the velocity tends to the uniform drift
velocity whose direction and magnitude are determined by the particle shape and size, the lattice geometry, and
the direction of the shear flow.

Figure 1. The lattice is described by two base vectorsa1 anda2, so that the designated centers
of two particles labelledn andm are related by

Xn = Xm + i1a1 + i2a2, (1)

wherei1 andi2 are two integers.
Far above the lattice, asz tends to+∞, the flow reduces to simple shear flow with shear

rateγ in the direction of the unit vectore that is parallel to thexy plane. Thus, the slope of
the velocity is required to exhibit the asymptotic behavior

lim
z→+∞

du
dz
→ γ e (2)

while the pressure tends to a constant value denoted byp+∞. Far below the lattice, asz tends
to−∞, the shear stress is required to vanish,

lim
z→−∞

du
dz
→ 0 (3)

and the pressure tends to a constant value denoted byp−∞. Integration of the preceding two
equations with respect toz produces the asymptotic forms

lim
z→+∞ u→ γ ze+ U+∞ + edt (4)

and

lim
z→−∞ u→ U−∞ + edt, (5)

whereU+∞ andU−∞ are two constant velocities parallel to thexy plane, both to be computed
as part of the solution, and ‘edt’ stands for exponentially decaying terms. The magnitude and
direction of the slip velocityU+∞ depend on the definition of the origin of thez axis; in the
present case, the origin coincides with the designated particle centers [9, 16]. The magnitude
and direction of the uniform drift velocity induced by the shear flow under the lattice,U−∞, on
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the other hand, is independent of the origin of thez axis. Neither the slip velocity nor the drift
velocity is necessarily oriented in the direction of the shear flow. In practice, the shear flow
may be generated by the translation of a flat plate located atz = zp with velocity Up parallel
to the particle lattice. Using the asymptotic form (4), we findUp = γ zpe+ U+∞, which
provides us with an expression for evaluatingγ e andU+∞, when another linear relationship
between them has been established.

Returning to the problem of infinite shear flow, we perform a force balance over a control
volume that is confined between (a) four planes that are perpendicular to thexy plane and
enclose one lattice cell and thus one particle, (b) two planes that are parallel to thexy plane
located far above or below the particle lattice, and (c) the surface of the enclosed particle, to
obtain

F ≡
∫

Particle
f(x) dS(x) = µγAe+ A(p−∞ − p+∞)ez, (6)

whereF is the force exerted on one particle,f = σ · n is the hydrodynamic traction,σ is the
stress tensor,n is the unit vector normal to the particle pointing into the fluid,µ is the fluid
viscosity,A is the area of one lattice cell, andez is the unit vector pointing along thez axis.

The motion of the fluid is governed by the equations of Stokes flow [17]

∇p = µ∇2u, ∇ · u = 0 (7)

which are to be solved subject to (a) the far-field conditions expressed by Equations (4) and
(5), (b) the no-slip and no-penetration conditionu = 0 on the particle surface, and (c) the
periodicity condition

u(x) = u(x+ i1a1+ i2a2) (8)

wherei1 andi2 are two integers. Our main objective is to compute the slip and drift velocities
as functions of the particle shape and size and of the lattice geometry, in the limit of vanishing
Reynolds number.

2.1. INTEGRAL FORMULATION

To prepare the ground for the integral formulation, we introduce the Green’s function of the
equations of Stokes flow describing the doubly-periodic flow due to a two-dimensional lattice
of point forces that is identical to the particle lattice shown in Figure 1. The velocity and
pressure field induced by the point forces at the pointx are expressed by

u1(x) = 1

8πµ
Gij (x, x0) bj , p(x) = 1

8π
Pj(x, x0) bj (9)

whereG is the velocity Green’s function tensor,P is the pressure Green’s function vector,
and b is the strength of a point force; one arbitrarily selected point force is located atx0.
The Green’s functions for the velocity and pressure satisfy the periodicity condition shown in
Equation (8). Moreover, asz − z0 tends to+∞, we require the asymptotic behavior

lim
z→+∞G(x, x0)→−8π

A
(z − z0) J+ edt, lim

z→+∞P(x, x0)→ 8π

A
ez + edt, (10)

whereJ is the identity matrix but with the third diagonal component corresponding to thez

axis set equal to zero. Asz − z0 tends to−∞, all components of the Green’s functions are
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required to vanish. When the point forces are parallel to the lattice, the pressure field decays far
from the lattice. When the point forces are perpendicular to the lattice, a pressure difference is
established across the lattice to balance the point force exerted on the volume of fluid confined
within each periodic cell.

The computation of the Green’s functions in terms of Fourier series or Ewald sums has
been discussed by Ishii [6], Sangani and Behl [11], and Pozrikidis [18]. As the observation
pointx approaches a point force, the expressions in terms of Fourier series converge extremely
slowly and are inadequate for the purposes of numerical computation. As an alternative, we
evaluate the Green’s function using the fast summation method developed in [18], based on
the expression

G(x, x0) =
∑
n

(
I
1− 3ξrn + ξ2r2

n

rn
+ (x− xn)(x− xn)

1+ ξrn − ξ2r2
n

r3
n

)
e−ξrn+

+4π

A

∑
m

|lm| 6= 0

(−I∇2+ ∇∇)

1

2

(
1+ ρm
|lm|3 e−ρ + (2− ζ

2
m)(1+ δ

√
1+ ζ 2

m)+ δ2(1+ ζ 2
m)

ξ3(1+ ζ 2
m)

5/2

)
cos(lm · x)+

+4π

A
(−I∇2+∇∇)2+ 2δ + δ2

2ξ3
e−δ cos(lm · x)

(11)

whereξ is an arbitrary splitting parameter,rn = |x − xn|, xn is the location of thenth point
force, the first sum on the right-hand side of (11) runs over all point forces, and the second
sum runs over the nodes of the reciprocal planar wave number lattice with base vectorsb1 =
(2π/A)a2× ez andb2 = (2π/A)ez × a1;ρm = |lm|(z − z0), ζm = |m|/ξ , andδ = ξ(z − z0).
The computations reported in later sections were conducted usingξ = 2π/

√
A. Figure 2(a)

shows the streamline pattern in thexz plane induced by a square lattice of point forces directed
along thex axis. The unit lattice vectors are given bya1 = (L,0,0),a2 = (0, L,0), and one
of the point forces is located at the origin, The onset of regions of recirculating flow above
and below the lattice is a dominant feature of the motion.

It can be shown that, subject to the previously stated conditions, the Green’s function
satisfies the properties

G(x, x0) = G(x0, x)− 8π

A
(z − z0) J (12)

and

P(x, x0) = P(x0, x)− 8π

A
ez (13)

which allow us to switch the location of the singular point and field point, provided that we
also include a complementary shear flow or decrease the pressure by an appropriate amount.

Considering now the control volume confined between (a) four planes that are perpendic-
ular to thexy plane and enclose one lattice cell and thus one particle, (b) two planes that are
parallel to thexy plane and are located far above or below the particle lattice, and (c) the
surface of the enclosed particle, we use the integral representation for Stokes flow to express
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Figure 2. (a) Streamline pattern in thexz plane induced by a square lattice of three-dimensional point forces
directed along thex axis. (b) Streamline pattern induced by an array of two-dimensional point forces directed
along thex axis.

the flow variables in terms of boundary integrals [17]. Exploiting the stipulated periodicity of
the flow and the conforming periodicity of the Green’s function, shifting the bottom boundary
of the control volume to negative infinity, and noting that far below the lattice the velocity of
the shear flow tends to a constant value whereas the Green’s function for the velocity vanishes,
we derive the following representation for the velocity at a pointx0:

uj(x0) = − 1

8πµ

∫
Particle

Gij (x, x0)fi(x) dS(x)+

+ 1

8πµ

∫
Top
Gij (x, x0)fi(x) dS(x)− 1

8π

∫
Top
ni(x)Tijk(x, x0)uk(x) dS(x)

(14)

whereT is the stress tensor associated with the Green’s function, and "Top" denotes the top
of the control volume. Over the particle surface, the unit normal vectorn points into the fluid,
whereas over the top of the control volume,n points toward the positivez axis. Observing the
limit as the top of the control volume moves to infinity, and noting the asymptotic behavior
of the flow under consideration and of the periodic Green’s function, we obtain a simplified
representation in terms of the single-layer Stokes potential and the unknown slip velocity,

uj(x0) = − 1

8πµ

∫
Particle

Gij (x, x0)fi(x) dS(x)+ γ z0 ej + U+∞j . (15)

Taking now the limit as the field pointx0 moves far below the particle array, and using the
asymptotic behavior of the Green’s function described earlier, we find

U−∞j →− 1

8πµ

(
−8π

A

)∫
Particle

(z− z0)Jij fi(x) dS(x)+ γ z0ej + U+∞j . (16)

Breaking up the integral into two parts, and using the integral force balance expressed by
equation (6), we obtain a relationship between the slip and drift velocities,
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U−∞j = U+∞j + Jij 1

µA

∫
Particle

zfi(x) dS(x) (17)

which shows that their difference is on the order of the particle size normal to the lattice. For
discoidal particles of zero thickness, the difference will vanish.

It is both useful and physically appealing to recast the representation (15) into an alternative
form expressing the flow induced by a distribution of point forces over the particle surfaces.
For this purpose, we use identity (12) to switch the arguments of the Green’s function, finding

uj(x0) = − 1

8πµ

∫
Particle

Gji(x0, x)fi(x) dS(x)+ Jij
∫

Particle
(z− z0)fi(x) dS(x)+

+γ z0ej + U+∞j .

(18)

The first integral on the right-hand side of (18) represents the requisite distribution of point
forces. To simplify the remaining terms, we use an integrated form of the reciprocal relation
for Stokes flow over the boundaries of the control volume previously defined, written for the
flow under consideration and for a test shear flow with velocityutest= γ test(z− z0)etest, where
γ test is an arbitrary shear rate andetest is an arbitrary unit vector parallel to thexy plane,
obtaining∫

Particle, Bottom, Top
γ test(z − z0)e

test
i fi(x) dS(x) =

∫
Particle, Bottom, Top

ui(x)f test
i (x) dS(x). (19)

Requiring the boundary condition at the particle surface, shifting the top and bottom bound-
aries of the control volume far above or below the particle lattice, and taking into consideration
the asymptotic behavior of the flow, we obtain the identity∫

Particle
(z− z0)fj(x) dS(x) = −µγAz0+ µγ testA(U−∞i − U+∞i ). (20)

Finally, we combine equations (18–20) and derive the desired representation

uj(x0) = − 1

8πµ

∫
Particle

Gji(x0, x)fi(x) dS(x)+ U−∞j . (21)

On the basis of this representation, we find that pressure difference across the lattice is given
by

p−∞ − p+∞ = 1

A
F · ez (22)

in agreement with (6).
Evaluating equation (15) or (21) at the particle surface, and requiring the boundary con-

dition u = 0, we obtain a Fredholm integral equation of the first kind for the distribution of
the tractionf. Equation (6) provides us with a supplementary condition that we may use to
compute the slip velocityU+∞ or drift velocityU−∞. Having computed one, the other follows
from Equation (17).

2.2. MULTIPLE ARRAYS

The formulation for shear flow over a two-dimensional particle array developed in this section
may be extended readily to shear flow over multiple arrays or a semi-infinite lattice modeling
an ordered porous medium, considered by Sangani and Behl [11]. In the case of flow over a
semi- infinite lattice, the fast decay of the velocity down the lattice causes the drift velocity to
vanish, yielding the counterpart of the representation (21)
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uj(x0) = − 1

8πµ

∞∑
l=1

∫
Pl

Gji(x0, x)fi(x) dS(x) (23)

wherePl denotes a particle that belongs to thelth array. Evaluating this representation at a
point located on a particles surface, and requiring the boundary conditionu = 0, we obtain a
homogeneous Fredholm integral equation of the first kind for the distribution of the traction
f, which is to be solved subject to a constraint imposed by thex andy components of the
integral force balance

∞∑
l=1

∫
Pl

f(x) dS(x) = µγAe+ A(p−∞ − p+∞)ez. (24)

The pressure drop across the lattice arises as part of the solution in terms of thez component
of the force exerted on the individual particles.

3. Asymptotics for small particles

When the typical particle sizea is small compared to the characteristic dimension of the
particle latticeL, an approximate solution of the problem posed in Section 2 may be found
using the method of matched asymptotic expansions. Considering the integral representation
(21), we find that, to leading order with respect to the small parameterε = a/L, the velocity
induced at the designated center of one particle by all other particles is given by

uj(xp) ∼= 1

8πµ
DjiFi + U−∞j , (25)

whereD is the difference between the free-space Green’s function or Stokeslet, denoted byS,
and the periodic Green’s function, evaluated at the particle centerxp,

Dji ≡ (Sji −Gji)(xp, xp). (26)

Using the principles of matched asymptotic expansions, we find that to leading order inε, the
force exerted on the particle is given by

Fk ∼= 6π µ a Rkj (
1

8πµ
DjiFi + U−∞j ), (27)

whereR is a dimensionless resistance tensor relating the force exerted on a stationary solitary
particle to the velocity of an infinite uniform incident flow. For a spherical particle of radius
a,R is the identity matrixI . Solving Equation (27) forU−∞, and using expression (6) to
evaluate the force, we obtain

U−∞ ∼= γA

6πa
(R−1− 3

4a D) · e (28)

accurate to first order with respect toε. An alternative form of (28) is

U−∞ ∼= 1

6
γ a

1

φ

(
R−1− 3

4φ
1/2

(
A

π

)1/2

D

)
· e, (29)
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Table 1. Diagonal components of the
matrix D for a rectangular lattice of
side ratioδ.

δ LDxx LDyy LDzz

0·1 −13·02 33·95 6·98

0·2 −13·44 3·11 −3·44

0·3 −11·67 − 3·33 −5·00

0·4 −10·19 − 5·38 −5·18

0·5 − 9·04 − 6·09 −5·04

0·6 − 8·14 − 6·29 −4·81

0·7 − 7·41 − 6·27 −4·56

0·8 − 6·81 − 6·14 −4·32

0·9 − 6·30 − 6·01 −4·10

1·0 − 5·85 − 5·85 −3·90

whereφ = πa2/A is the effective areal fraction of the planar array occupied by the particles.
Expression (28) illustrates the singular behavior of the drift velocity, and thus of the slip

velocity, in the limit as the particle size becomes much smaller than the particle separation.
Physically, the small surface area of the particles requires a large incident velocity to produce
a force that is able to balance the shear stress exerted at the top of the lattice. This singular
behavior is analogous to that exhibited by the velocity of a non-deforming three-dimensional
particle lattice upon which a constant force is exerted due, for example, to gravity [19].
Moreover, expression (28) illustrates that when, either the resistance tensor for the force, or
the Green’s function tensorD, or both, are anisotropic, the drift velocity, and thus the slip
velocity, is not necessarily directed parallel to the shear flow; that is, a shear flow in a certain
direction may cause a drift or slip velocity in another direction.

For a rectangular lattice with base vectorsa1 = L(1,0,0),a2 = L(0, δ,0) parallel to
thex or y axis, whereδ is the dimensionless aspect ratio, the matrixD(xp, xp) is diagonal.
Numerical computation produces the values of the diagonal components listed in Table 1 in
termsδ. The values ofDzz are implicit in a graph presented by Ishii ([6] Figure 2), and agree
with the present results within plotting resolution. It is interesting to note the inversion in the
sign ofDyy andDzz for small lattice aspect ratios; the physical interpretation of this behavior
is not clear. For a hexagonal lattice corresponding toa1 = L(1,0,0),a2 = L(0·5, 31/2/2,0),
the tensorD(xp, xp) is diagonal with componentsDxx = Dyy = 6·32/L, andDzz = 4·21/L.

3.1. SHEAR FLOW OVER A SEMI-INFINITE LATTICE

The preceding asymptotic solution may be extended readily to shear flow over multiple par-
ticle arrays. The extension to a semi-infinite lattice, considered previously by Sangani and
Behl [11] using a somewhat different method, requires modification due to the vanishing of
the drift velocity. For simplicity, we assume that all particle layers are identical, and the layer
separations are constant and equal toH .

As the particle size becomes smaller than the inter-particle separation, the integral repre-
sentation (23) evaluated at the center of a particle located at thekth layer, yields
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ui(x(k)) ∼= 1

8πµ
Dij (x(k), x(k))F

(k)
j −

1

8πµ

∞∑
l = 1
l 6= k

Gij (x(k), x(l))F
(l)
j , (30)

whereF(m) is the force exerted on a particle the belongs to themth layer, and the tensorD is
defined in (26). A global force balance requires

∞∑
l=1

F(l) = µγA e+ A (p−∞ − p+∞) ez. (31)

Using the method of asymptotic expansions, we find

F(k)m = 6πµa Rmi

 1

8πµ
Dij (x(k), x(k))F

(k)
j −

1

8πµ

∞∑
l = 1
l 6= k

Gij (x(k), x(l))F
(l)
j

 , (32)

whereR is the resistance tensor for the force exerted on a particle in infinite uniform flow.
Rearranging Equation (32), we obtain the homogeneous linear system(

I − 3

4
a R · D(x(k), x(k))

)
· F(k) + 3

4
a R ·

∞∑
l = 1
l 6= k

G(x(k), x(l)) · F(l) = 0 (33)

which is to be solved subject to the global constraint imposed by (31). Recalling the linear
dependence of the Green’s function for the velocity on the vertical coordinatez far above a
plane of the point forces, we derive the approximate form(

I − 3

4
a R · D(x(k), x(k))

)
· F(k) − 6πa

A
R ·

∞∑
l=k+1

(z(k) − z(l))J · F(l) = 0 (34)

which is a generalization of the asymptotic form of Equation (59) derived by Sangani and
Behl [11] for spheres.

To establish the asymptotic behavior far below the top layer, we note that the solution of
the discrete problem expressed by Equation (34) bears some resemblance to the solution of
the integral equation(

I − 3
4a R · D(x(k), x(k)))F(w)− 6πa

A H
R ·

∫ w

−∞
(w − ν) · J · F(ν) dν = 0, (35)

wherew = −z is the positive distance from the top layer down the array, andF is a distributed
body force. The integral constraint (31) requires

1

H

∫ ∞
0

F(w) dw = µγA e + A(p−∞ − p+∞) ez. (36)

Differentiating both sides of (35) twice with respect tow, we derive the differential equation(
I − 3

4aR · D(xk, xk)
) d2F(w)

dw2
− 6πa

A H
R · J · F(w) = 0. (37)
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As the size of the particles becomes smaller, the second term in the first set of parentheses
on the left-hand side of (37) becomes negligible, and a solution of the resulting simplified
equation that decays to zero asw tends to infinity is given by

J · F(w) = c · exp(−σw) (38)

wherec is a vectorial constant whose first two components must be evaluated by requiring
the satisfaction of thex and y components of the force balance (36), andσ is a tensorial
rate-of-decay given by

σ 2 = 6πa

AH
R. (39)

In the case of spherical particles, corresponding toR = I , this expression is in agreement with
that given in Equation (62) of Sangani and Behl [11].

Treating the field (38) as a distributed body force, we now describe the average flow in
the semi-infinite matrix in terms of an effective velocity, designated by angular brackets, by
means of the equation

µJ · d
2〈u〉
dw2

+ c · exp(−σw) = 0. (40)

Solving forJ · 〈u〉, and expressing the exponential term on the right-hand side in terms of the
solution, we obtain the standard form of Brinkman equation for flow in an anisotropic medium

J ·
(

d2〈u〉
dw2

− σ 2 · 〈u〉
)
= 0. (41)

4. Numerical results for arbitrary particle sizes

To study flow over particles with arbitrary shape and size, we solve the integral Equation (15)
using a boundary element method. In the numerical procedure, the surface of a particle is
discretized into a collection of six-node curved triangles generated by successively subdi-
viding an octahedron into four descendant elements. The three components of the traction
are approximated with constant functions over each element, and the integral equation is
evaluated at collocation points located at the centroid of each triangle to produce a system
of linear algebraic equations. The Green’s function is integrated using the seven-point triangle
quadrature over the nonsingular elements [20].

To compute the integral over a singular triangle, we subdivide the triangle into four flat
triangles defined by the vertex and mid-nodes, and then integrate individually over each flat
triangle in local polar coordinates centered at the singular point. The vector of unknowns
includes the three Cartesian components of the traction over each element, and the two com-
ponents of the slip velocity. Two additional equations arise by appending to the linear system
the discrete forms of thex andy components of the integral force balance expressed by the
global constraint (6).

It is well known that the integral Equation (15) has an infinite number of solutions: conser-
vation of mass for the flow induced by a lattice of point forces requires∫

Particle
nj (x)Gji(x, x0) dS(x) = 0. (42)
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Because of this identity, any particular solution of the integral Equation (15) may be enhanced
with an arbitrary multiple of the normal vector. Combining identity (42) with (12), and using
the divergence theorem, we find the reciprocal identity∫

Particle

(
γ zej + U+∞j

)
nj (x) dS(x) = 0. (43)

Projecting both sides of (15) onto the normal vector, integrating over the particle surface, and
using identity (43), we derive the solvability condition∫

Particle

(
γ zej + U+∞j

)
nj (x) dS(x) = 0 (44)

whose satisfaction can be demonstrated readily by use of the divergence theorem.
The non-uniqueness of solution of the integral equation causes the numerical solution of

the discretized system to be sensitive to the numerical or round-off error: the more accurate the
numerical solution, the higher the condition number of the matrix resulting from the boundary-
element discretization. To remove this sensitivity, we consider the discrete form of the integral
identity (42) corresponding to the discretization of the integral equation, and express it in the
symbolic form

A ·w = 0. (45)

The discrete approximate eigenvectorw contains the components of the normal vector evalu-
ated at the collocation points. If the boundary elements were flat triangles, in which case the
discretized particle surface would be polyhedral, the normal vector over each element would
be constant, and condition (45) would be satisfied up to the numerical error associated with the
numerical computation of the influence matrixA. More generally,w tends to become an exact
eigenvector as the discretization error is reduced by increasing the number of the elements.

To the author’s knowledge, with a recent exception [21], in all previous numerical solutions
of the present or similar integral equations, the nearly-singular behavior of the linear system
was ignored, and the numerical method relied on the discretization error, the round-off error,
or an inherent geometrical symmetry to produced a sensible solution. General methods for
regularizing nearly singular algebraic systems by spectrum deflation have been discussed by
several authors in a more general framework [22, 23]. In the present case, the availability
of the adjoint eigenvectors of the single-layer potential corresponding to the null eigenvalue
allows us to perform regularization with the least amount of perturbation, as follows.

The discrete form of the solvability condition (44) corresponding to the discretization
underlying the system (15) is∑

k

(γ z ei + U+∞i )k n
(k)
i hk = 0, (46)

where summation is implied overi = 1,2,3, the indexk runs over the collocation points, and
hk is an integration weight with respect to surface area playing the role of a discrete metric. In
the present implementation,hk is the element surface area.

To regularize system (45), we multiply both sides by the preconditioning matrixP defined
as

P= I − νT ν, (47)
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where the length of the vectorν is equal to three times the total number of collocation points,
and the entries ofν host the discrete adjoint eigenvectorαn(k)i hk;α is a scaling coefficient
adjusted so that the length ofν is equal to unity. It is evident thatν is an exact eigenvector of
the transpose of the preconditioned singular matrix corresponding to the zero eigenvalue, and
the solvability condition is also satisfied to machine accuracy. Thus, the projection guarantees
the satisfaction of both the integral identity (43) and the solvability condition (45), while
introducing the mildest possible perturbation of the right-hand side: when (43) is fulfilled, the
projection has no effect on the right-hand side.

To obtain one solution of the singular preconditioned system, we set the value of thez

component of the traction at the last collocation point equal to an arbitrary value that was
selected to be zero. Discarding the corresponding equation, we obtain a reduced system with
a unique solution that may be computed using any dense-system linear solver, for example,
by the method of Gauss elimination.

All computations reported in this section were carried out with 128 boundary elements
corresponding to the second level of discretization of the regular octahedron. The sums in
real and reciprocal wave number space involved in the computation of the Green’s function
were truncated at the value of 10. Each solution of the integral equation required several
hours of CPU time on a SUN SPARCstation 20, with the majority of the computational effort
devoted to evaluating the doubly-periodic Green’s function. To estimate the magnitude of the
numerical error, the numerical procedure was used to compute flow past a triply periodic array
of spheres, by replacing the doubly-periodic Green’s function with the triply-periodic Green’s
function computed in terms of Ewald sums [18]. Comparison with results published by Zick
and Homsy [24] for uniform flow through a triply-periodic lattice of spheres showed that the
numerical error is less than 0.5% for all reported cases.

In Figure 3(a), we plot with circles and squares, respectively, the slip and drift velocity for
shear flow over a square lattice of spherical particles of radiusa, where the flow is directed
along thex or y axis. The solid line represents the predictions of the asymptotic expression
(28), yielding

U+∞ = U−∞ ∼= γL 1

6π

L

a
(α − 4·39

a

L
)e, (48)

whereL is the length of the base vectors, andα = 1. The agreement between the asymptotic
and numerical results is excellent up toa/L = 0·15, at which point the magnitudes of the
slip and the drift velocity have become very small. The slip velocity becomes negative when
the particle radius exceeds a certain threshold, whereas the drift velocity remains positive for
all particle sizes considered. Inversion in the sign of the slip velocity was reported previously
by Larson and Higdon [9, 10] and Sangani and Behl [11], respectively, for shear flow over a
semi-infinite lattice of cylinders or spheres.

In Figure 3(b), we present corresponding results for shear flow over a hexagonal lattice of
spherical particles corresponding to the base vectorsa1 = L(1,0,0),a2 = L (0·5, 31/2/2,0).
The solid line represents the predictions of the asymptotic expression (28), yielding

U+∞ = U−∞ ∼= γL0.866

6π

L

a
(1− 4·74

a

L
) e. (49)

As in the case of the square lattice, the agreement between the numerical and asymptotic
results is surprisingly good even when the particles are not small. In spite of some quantitative
differences, the results for the square and the hexagonal lattice are generally similar.



16 C. Pozrikidis

Figure 3. Slip and drift velocity plotted, respectively, with circles and squares for (a) a square lattice of spherical
particles of radiusa, (b) a hexagonal lattice of spherical particles of radiusa, and (c, d) a square lattice of spheroidal
particles of aspect ratio 2:1 and equivalent radiusa. Panel (c) shows results for flow along the major axis, and panel
(d) results for flow along the minor axis. The solid lines represent the predictions of the asymptotic theory for small
particle sizes.

In Figure 3(c, d), we present results for shear flow over a square lattice of spheroidal
particles with axes ratio 2:1 and equivalent volume radiusa, positioned with the major axis
parallel to thex axis. The solid lines represent the predictions of the asymptotic expression
(28) yielding Equation (48) withα = 1·046 in the case of flow along the major axis, andα =
0·914 in the case of flow along the minor axis. The agreement between the asymptotic and
numerical results is excellent even for small particle separations. The numerical results show
once again that the slip velocity becomes negative when the equivalent radiusa crosses a
threshold, whereas the drift velocity remains positive for all cases considered. Similar results
were obtained for spheroids with different aspect ratios.

As the size of the particles is increased, the tips of the spheroids touch yielding an array of
corrugated cylinders. The structure of the flow in this limit may be studied in the context of
flow over a periodic array of cylinders, to be discussed in Section 6. The results will show that
a negative slip velocity may be established for highly elongated and closely spaced particles
due to the onset of regions of recirculating flow in the intervening spaces.
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Figure 4. Schematic illustration of shear flow over a
flat plate of zero thickness containing a homogeneous
distribution of circular perforations.

Figure 5.Schematic illustration of longitudinal or trans-
verse shear flow over an array of evenly-spaced cylin-
ders.

Overall, we found that the asymptotic expansions produce sufficiently accurate results in
the regimes where the slip and drift velocities are not negligible compared toγ a. In practical
terms, the data presented in Figure 3 provide us with a basis for computing the size of particles
comprising a sieve or membrane in terms of measured values of the drift velocity.

5. Flow over a perforated plate

In the preceding sections, we have discussed flow over a planar lattice of particles of small
and moderate size. When the particle size is large, the lattice resembles a plane wall with a
periodic distribution of protrusions separated by gaps or perforations. To study the structure of
the flow in this limit, we consider a model configuration consisting of an infinite plate of zero
thickness with a homogeneous distribution of identical circular perforations separating two
semi-infinite domains, and evaluate the drift velocity as a function of the areal fraction of the
perforations. The results of Section 2 ensure that the slip and drift velocity will be identical.

When the radius of the perforations is small compared to the distance between any two
neighboring perforations, the flow may be expressed as the sum of the incident shear flow and
the disturbance flows due to the individual perforations. The building block for generating the
latter is the simple shear flow over a circular orifice on a plane wall derived by Smith [12] and
Davis [13]. In the Cartesian and accompanying polar coordinates defined in Figure 4, with
θ = 0 corresponding to the first quadrant of thezx plane, the velocity components for shear
flow along thex axis over a circular orifice of radiusb are given by

ux = γ
(
f1 cos 2θ+ f2+ 1

2
(1+ z

|z|)z
)
, uy = γf1 sin 2θ, uz = γf3 cosθ (50)

whereγ is the shear rate of the overpassing shear flow. We have introduced the auxiliary
functions
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f1 = 1

3π

λ2

b
ζ

1− ζ
(ξ2+ 1)(ξ2+ ζ 2)

,

f2 = 1

π
bζ

(
1− |λ|

b
arctan(

b

|λ| −
1

3

ζ 2

ξ2+ ζ 2

)
,

f3 = 2

3π
λζ

ζ 2

ξ2+ ζ 2

1− ζ 2

1+ ξ2

(51)

and we have defined

λ2 = 1

2

[
r2− b2 + ((r2 − b2)2+ 4z2b2)1/2] , λ = z

|z| |λ|, ζ =
z

λ
, ξ = λ

b
. (52)

The flow in the lower half-plane is the mirror image of the disturbance flow in the upper half-
plane. As the distance from the center of the orificer tends to infinity, the functionsf1, f2, f3

tend to vanish. In this limit,|λ| tends tor, and the functionf2 assumes the asymptotic form

f2 = 1

π
b
z

r

(
1− r

b
arctan

(
b

r

)
− 1

3

(
1+ r4

z2b2

)−1
)
. (53)

As z tends to positive or negative infinity, the infinite sum of the variables expressing the
superposition of the individual components of the disturbance velocity reduces to an area in-
tegral. Inspecting the expressions given in (50), we find that the assumption of a homogeneous
distribution of perforations requires that all integral vanish, with the exception of the integrals
of the functionf2 corresponding to the direction of the shear flow. Considering the limit asz

tends to positive or negative infinity, we use the asymptotic form (53) and obtain

ux → u±∞x = γ
1− φ
b2

lim
z→∞2π

∫ ∞
0

1

π
b

z

(z2+ ρ2)1/2

(
1− (z

2+ ρ2)1/2

b

arctan

(
b

(z2+ ρ2)1/2

))
− 1

3

(
1+ (z

2+ ρ2)2

z2b2

)
ρ dρ + γ 1

2

(
1+ z

|z|
)
z,

(54)

where 1− φ is the areal fraction of the perforations. Taking the limit asz tends to infinity
while the ratioρ/z remains finite, we find the asymptotic expression

u±∞x − γ 1

2
(1+ z

|z|) =
2

3
(1− φ)γ b

∫ π/2

0
sin3ω dω = 4

9
(1− φ)γ b = 4π

9
nγ b3 (55)

which is valid when the solid areal fractionφ of the plate is sufficiently close to unity and the
perforations are separated by a great distance;n on the right-hand side is the number density
of the perforations defined as the number of perforations per unit area of the plate.

To compare expression (55) with the diametrically opposite expansion (29) corresponding
to the limit of small solid fractions, we setb = a((1− φ)/φ)1/2, and find

u±∞x − γ 1

2
(1+ z

|z|)z = U
+∞
x = 4

9
γ a
(1− φ)3/2
φ1/2

. (56)

It is evident that different functional forms arise in the asymptotic limit ofφ tending to zero
or to unity.
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Previous numerical solutions have shown that the structure of shear flow over a solitary
orifice with non-zero thickness is sensitive to the thickness of the plate hosting the orifice,
and this suggests that the drift and slip velocity will be strong functions of the plate thickness.
Indeed, the numerical solutions presented in Section 4 revealed that the slip velocity becomes
negative for sufficiently large values ofφ, whereas (56) predicts positive values.

6. Shear flow over an array of cylinders

The formulation of the preceding sections may be extended in a straightforward fashion to
describe shear flow over a periodic array of cylinders separated by the distanceL, modeling,
for example, a membrane consisting of elongated fibers, as depicted in Figure 5. A shear flow
in an arbitrary direction may be decomposed into a unidirectional longitudinal flow along
the x axis parallel to the generators, and a transverse flow along they axis normal to the
generators. Both the longitudinal and the transverse flow over a semi-infinite regular lattice
were discussed by Larson and Higdon [9, 10]. Their results illustrated the structure of the
streamline patterns and established the dependence of the slip velocity on the cylinder shape
and areal fraction.

6.1. INTEGRAL FORMULATION

Considering first the case of longitudinal flow, we work as in Section 2 and derive the integral
representation

ux(X0) = − 1

µ

∫
Cylinder

GL(x, x0)fx(x) dl(x)+ γ z0+ U+∞x , (57)

where the integral is over the contour of one cylinder in theyz plane,l is the arc length, and
fx is thex-component of the traction. The kernelGL is the upward biased singly-periodic
Green’s function of Laplace’s equation given by

GL(x, x0) = 1

2π
H(x, x0)− 1

2

z− z0

L
, (58)

where

H(x, x0) = −1

2
log

[
2 cosh

(
2π

L
(z − z0)

)
− 2 cos

(
2π

L
(y − y0)

)]
(59)

representing the harmonic potential at the pointx due to a periodic array of two-dimensional
point sinks of unit strength, where one of the point sinks is located at the pointx0. Far above
the array of point sinks, asz − z0 tends to+∞, the Green’s function exhibits the asymptotic
behaviorGL → −(z − z0)/L+ edt; far below the array, asz − z0 tends to−∞, the Green’s
function vanishes at an exponential rate. Using these conditions, we find that the slip and drift
velocity are related by

U−∞x = U+∞x + 1

µL

∫
Cylinder

z fx(x) dl(x). (60)

Considering next the case of transverse flow along they axis, we work as in Section 2 and
derive the integral representation
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uj(x0) = − 1

4πµ

∫
Cylinder

G2D−1P
ij (x, x0)fi(x) dl(x)+ δjy γ z0+ δjyU+∞y (61)

where the indicesi and j range overy and z, andG2D−1P
ij is the singly-periodic Green’s

function of Stokes flow with components

G2D−1P
yy (x, x0) = H(x, x0)+ (z− z0)

∂H(x, x0)

∂z
− 2π

z− z0

L
,

G2D−1P
yz (x, x0) = G2D−1P

zy (x, x0) = −(z − z0)
∂H(x, x0)

∂y
,

G2D−1P
zz (x, x0) = H(x, x0)+ (z− z0)

∂H(x, x0)

∂z

(62)

representing the velocity due to an array of two-dimensional point forces. The streamline
pattern established when the point forces are directed parallel to the array is depicted in
Figure 2(b). Far above the array of the point forces, asz − z0 tends to+∞,G2D−1P

xx →
−4π(z− z0)/L+edt, while the other components decay at an exponential rate. Far below the
array, asz − z0 tends to−∞, all components ofG2D−1P

ij decay at an exponential rate. Using
these conditions, we find that the slip and drift velocities are related by

U−∞y = U+∞y + 1

µL

∫
Particle

z fy(x) dl(x). (63)

As in the case of three-dimensional flow, the difference between these two velocities is on the
order of the cylinder size normal to the array.

6.2. ASYMPTOTICS FOR SMALL CIRCULAR CYLINDERS

The ill-posedness of infinite two-dimensional Stokes flow prevents us from using the method
of matched asymptotic expansions to derive expressions for the slip and drift velocity in
the limit of small cylinder sizes. Hasimoto [25] modified a method pioneered by Burgers
to study uniform flow through a doubly-periodic array of circular cylinders of small size. The
method involves writing the integral representation (57) or (61) at a point on the surface of a
cylinder, expanding the Green’s function into a Laurent series whose leading term is the free-
space Laplace Green’s function or the two- dimensional Stokeslet, retaining only the singular
and constant terms, and then requiring that the integral of the velocity over the contour of
the cylinder vanish. Hasimoto [25], Sangani and Acrivos [26], and Drummond and Tahir
[27] confirmed the validity of this approach by recomputing and extending the asymptotic
expansion using different methods.

Applying Burgers’ method to the present problem, we find

U±∞ ∼= γL

2π
(− log

( a
L

)
− 1·879) (64)

for longitudinal flow, and

U±∞ ∼= γL

4π
(− log

( a
L

)
− 2·3379) (65)
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Figure 6 Slip and drift velocity plotted, respectively, with circles and squares for (a) longitudinal, and (b)
transverse flow past an array of cylinders of radiusa separated by the distanceL.

for transverse flow. The logarithmic dependence may be contrasted with the inverse first
power behavior encountered previously for three-dimensional flow, underscoring once more
the distinct nature of two- and three-dimensional Stokes flow.

6.3. NUMERICAL RESULTS FOR CIRCULAR CYLINDERS

The integral equations arising from the integral representations (57) and (61) were solved us-
ing the counterpart of the numerical method discussed in Section 4. In Figure 6(a, b ), we plot,
respectively, with circles and squares the slip and drift velocity for longitudinal and transverse
flow past an array of cylinders of radiusa separated by the distanceL; the caret indicates
nondimensionalization with respect toγL. The solid lines represent the predictions of the
asymptotic expressions (64) and (65). In both cases, the numerical results confirm that asa/L

tends to vanish, both velocities diverge at a logarithmic rate. Significant differences between
the asymptotic predictions and the numerical results arise whena/L becomes approximately
greater than 0·10.

For small cylinder sizes, the slip and drift velocities are positive for both longitudinal and
transverse flow. As the cylinders become larger, the slip velocity becomes negative at a certain
cylinder radius. In the limit asa/L tends to 0·5, corresponding to touching cylinders, the slip
velocity tends to a limiting value that is consistent with a value extrapolated from graphs
presented by Larson and Higdon [9, 10] for shear flow over a semi-infinite lattice. To make
this comparison, we recomputed the slip velocity in terms of the flow rate above the array, as
discussed by the previous authors. In the case of longitudinal flow, the drift velocity is positive
for any cylinder radius, in agreement with physical intuition. In the case of transverse flow,
however, as the cylinders become larger, the drift velocity changes sign at a particular cylinder
radius and then it shows weak fluctuations.

To explain the physical reason for a negative drift velocity, in Figure 7(a, b) we present
streamline patterns fora/L = 0·10 and 0·30. In the first case, regions of recirculating flow do
not develop, and the fluid moves in the direction of the shear flow above and below the array.
To demonstrate the effect of the cylinder geometry, in Figure 7(c) we present the streamline
pattern for flow over a plane wall with a slit, computed using the exact solution derived
by Smith [12]. The comparison reveals topologically similar features near the opening, but
significant differences below the plate due to the establishment of the drift velocity in the case
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Figure 7 Streamline patterns for shear flow over an array for circular cylinders for (a)a/L = 0·10 and (b) 0·30.
Streamline patterns for shear flow over a plane wall with a slit.

of flow over the cylinders. Figure 7(b) reveals that whena/L = 0·30, regions of recirculating
flow develop between the cylinders. The backward motion of the fluid at the bottom of the
eddies drives a weak flow with a negative drift velocity.

7. Concluding remarks

We have studied shear flow over a planar lattice of particles by asymptotic and numerical
methods. The asymptotic results were found to generate accurate predictions over an extended
range of particle sizes in the case of three-dimensional flow, and over a moderate range of
particle sizes in the less realistic case two-dimensional flow. We have also derived asymptotic
expressions for the slip and drift velocity of shear flow over a plate with a homogeneous
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distribution of perforations, in the limit of large solid fractions. These expressions are suitable
for deriving modified boundary conditions that relate the local jump in the shear stress to the
jump in the velocity across a membrane subjected to an ambient flow.

The model problems considered in this study involve flow over regular arrays. In reality, the
particles are likely to be distributed randomly over the plane of the array. The hydrodynamical
laws of flow through random particulate media and over random porous surfaces have been
shown to be fundamentally different from those for ordered media, at least in the limit of
small volume fractions [28–30]. Accordingly, the slip and drift velocities of flow over regular
arrays are expected to obey laws that are different than those for random arrays in the limit of
small particle sizes. Whether or not the dichotomy persists at higher solid fractions needs to
be addressed in future analysis.
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